Name: Date: Unit 9, Day 6 Notes Period: Image: Constraint of the solution of a factored quadratic. > I can find the solution of a factored quadratic. Image: Constraint of the solution of a factored quadratic. > I can determine roots of quadratic functions from their equations.

Solving Quadratics Using the Zero-Product Property

When a quadratic equation is in factored form, we can use the Zero-Product Property to find the solutions.

Zero-Product Property

If $a \cdot b = 0$, then either a = 0 or b = 0.

Ex:

If 3x = 0, solve for x.

x <u>must</u> equal zero.

We can use the **ZPP** to solve factored quadratics.

Ex:

Find the zeros y = (x - 1)(x + 4)

Step 1: Set the equation equal to zero.
Step 2: Write two new equations with the factors equal to zero.
Step 3: Solve each of the new equations. These are your x-intercepts/solutions/zeros/roots.
Step 4: Graph (or plug in) to solve.

Solve each:

x - 1 = 0	x + 4 = 0
x $1 = 0$	$\lambda + 1 = 0$

The solutions of y = (x - 1)(x + 4) are x = and x =

Graph y = (x - 1)(x + 4) and check!

You Try:

Determine the roots of y = (x + 2)(x + 4)	Find the zeros of y = -(x - 2)(x - 3)	What are the solutions of $y = x(2x + 3)$
Step 1:	Step 1:	Step 1:
Step 2:	Step 2:	Step 2:
Step 3:	Step 3:	Step 3:

Solving Quadratics by Factoring

When you are asked to solve a quadratic that isn't factored yet, then use the ZPP to find the solutions.

<u>Ex:</u> Solve $y = x^2 - 3x - 40$.

Step 1: Factor the equation.	
Step 2: Set the equation equal to zero.	
Step 3: Set each factor equal to zero.	
Step 4: Solve the two new equations.	
Step 4: Graph to check.	

You try:

Determine the roots of $y = x^2 + 6x + 8$	Find the zeros of $y = -x^2 + 5x - 6$	What are the solutions of $y = 4x^2 + 4x + 8$

Calculator check

