Learning Targets

$>$ I can find the solution of a factored quadratic.
> I can determine roots of quadratic functions from their equations.

Solving Quadratics Using the Zero-Product Property

When a quadratic equation is in factored form, we can use the Zero-Product Property to find the solutions.

Zero-Product Property

If $a \cdot b=0$, then either $a=0$ or $b=0$.

Ex:

If $3 x=0$, solve for x.
x must equal zero.

We can use the ZPP to solve factored quadratics.

Ex:

Find the zeros $y=(x-1)(x+4)$

Step 1: Set the equation equal to zero.
Step 2: Write two new equations with the factors equal to zero.
Step 3: Solve each of the new equations. These are your x-intercepts/solutions/zeros/roots.
Step 4: Graph (or plug in) to solve.

Solve each:

$x-1=0$	$x+4=0$

The solutions of $y=(x-1)(x+4)$ are $x=$ and $x=$
Graph $y=(x-1)(x+4)$ and check!

You Try:

Determine the roots of $y=(x+2)(x+4)$ Step 1: Step 2: Step 3:	Find the zeros of $y=-(x-2)(x-3)$ Step 1: Step 2: Step 3:	What are the solutions of $y=x(2 x+3)$ Step 1: Step 2: Step 3:

Solving Quadratics by Factoring

When you are asked to solve a quadratic that isn't factored yet, then use the ZPP to find the solutions.
Ex: Solve $y=x^{2}-3 x-40$.

	Step 1: Factor the equation. Step 2: Set the equation equal to zero. Step 3: Set each factor equal to zero.
Step 4: Solve the two new equations.	
Step 4: Graph to check.	

You try:

Determine the roots of $y=x^{2}+6 x+8$	Find the zeros of $y=-x^{2}+5 x-6$	What are the solutions of $y=4 x^{2}+4 x+8$

Calculator check

You can find solutions by graphing and finding the zeros on the table.
Use your calculator to find the solutions to:

$$
x^{2}-7 x+10=0
$$

1. Graph the equation.
2. Press

2ND GRAPH
3. Look for the values of x where y is zero.

