Name:

Unit 8, Day 4 Warm-up

Date:

Period:

Simplify the radicals below.

$$\sqrt{50} = 5\sqrt{2}$$

$$-2\sqrt{147} = -14\sqrt{3}$$

$$\sqrt{9w^2y^8} = 3wy^4$$

$$\sqrt{9w^2y^8} = 3wy^4 \qquad \sqrt{4x^4y^3z} = 2x^2y\sqrt{y^2}$$

When n > 0, which expression is equivalent to  $\sqrt{44n^7}$  ?

a. 
$$2\sqrt{11}$$

b. 
$$4\sqrt{11n^7}$$

(c.) 
$$2n^3\sqrt{11n}$$

d. 
$$4n^3\sqrt{11}$$

| N   | 2 | r | v | ٠ | Δ |  |
|-----|---|---|---|---|---|--|
| 1.4 | α |   | L | ı | C |  |

Date:

Unit 8, Day 4 Notes

Period:



> Learning Targets: I can simplify radicals with constants and variables.

## **Cube Roots**

Perfect cube:  $\sqrt[3]{27} = \boxed{3}$ 

Not a perfect cube:  $\sqrt[3]{45} = 3.55681 \rightarrow$  This is a decimal! What do we do?

**1.** Simplify the radical expression  $\sqrt[3]{16}$ .

Step 1: Factor the number under the radical.  $36 \cdot 2$ 



Step 2: Circle groups of three.

For each group of 3, **one** can come out of the cube root.



Step 3: Check your answer in the calculator by comparing

the value of  $\sqrt[3]{16}$  to the value of your answer.

2.5198, 2.5198 /

**2.** Simplify the radical expression  $\sqrt[3]{81}$ .



4.3267, 4.3267 /

**3.** Simplify the radical expression  $\sqrt[3]{576}$ 



8.3203 , 8.3203

**4.** What is the value of  $\sqrt[3]{1080}$  in simplest form?



10.259, 10.259

## What if there are variables involved?

Simplify the radical  $\sqrt[3]{x^3}$ 

First, rewrite in factored form:

For every group of 3, one can come out.

So, 
$$\sqrt[3]{x^3} = \sqrt[3]{(X \cdot X \cdot X)} = X$$

Simplify 
$$\sqrt[3]{a^3} = \sqrt[3]{a \cdot a \cdot a} = a$$

When w and x > 0, write  $\sqrt[3]{8w^3x^6}$  in simplest form.

What is  $2w^2 x \sqrt[3]{10w^3 x^4}$  in simplest radical form?

$$2w^2x^3\sqrt{2.5} \cdot (w \cdot w \cdot w) \cdot (x \cdot x \cdot x) \times 2w^3x^4\sqrt{10}x$$

Unit 8, Day 4 Activity

Period:



**Learning Targets:** I can simplify radicals with constants and variables.

<u>Cube Root Challenge</u>: Divide students into teams and provide each team with a piece of chart paper. Have each team write the following problem at the top of the chart paper. Teams will use the chart paper to create a factor tree and simplify. The first team to find the correct answer will win. Teams can compete a second time using the second problem and could use the back of their chart paper.

You could project a timer onto the board! Here are some you could use: http://www.online-stopwatch.com/classroom-timers/

 $\sqrt[3]{3456}$  answer is  $12\sqrt[3]{2}$ 

 $\sqrt[3]{120x^9y^{16}}$ 

answer is  $2x^3y^5\sqrt[3]{15y}$ 

 $\sqrt[3]{220p^5q^6}$ 

answer is  $pq^2\sqrt[3]{220p^2}$ 

| Ν   | 3 | m     | Δ | • |
|-----|---|-------|---|---|
| 1.4 | а | 3 1 1 | C | ٠ |

Date:

Unit 8, Day 4 Practice

Period:



## **Learning Targets**

> I can simplify radicals with constants and variables.



3(2.2.2)(2.2.2)·3·(w.w.w(w.w.w) (y.y.y)(y.y)(y.y) (4w<sup>2</sup>v<sup>3</sup>s/3 1. Simplify  $\sqrt{56x^2y^8}$ 



- What is the solution to 6-3y > -5y? 2.
- A. y > 3
- B. y < 3 C. y > -3
- D. y < -3
- 3. Which describes the slope of the line that passes through (-3, -2) and (0, -1)?



Positive

- Negative
- Zero
- Undefined D)

4. Write the equations of each of the lines on the graph.



Equation A:  $\frac{1}{\sqrt{2}} = \frac{2}{\sqrt{2}}$ Equation C:  $\frac{1}{\sqrt{2}} = \frac{2}{\sqrt{2}}$ 

Equation B:  $\times = -2$ Equation D:  $\times = 2$ 

Name:

## Unit 8, Day 4 Exit Ticket

Date:

Period:

1. What is the value of  $\sqrt[3]{192}$  in simplest radical form?



- 2. Which expression is equivalent to  $\sqrt[3]{16m^5x}$ ?
  - a.)  $2x\sqrt[3]{8m^5}$



- c.)  $2m\sqrt[3]{m^2x}$
- d.)  $8x\sqrt[3]{m^5}$

3. Simplify the radical expression:  $-2\sqrt[3]{54}$ 



4. How are square roots different from cube roots? Explain.

answers will vory!