

Look at this pattern:

$$
2^{5}=\ldots \quad 2^{4}=\ldots \quad 2^{3}=\ldots \quad 2^{2}=\ldots \quad 2^{1}=
$$

What happens each time the exponent decreases by one? \qquad
If this pattern continues, what would the value of 2^{0} equal? \qquad
What would 2^{-1} equal? \qquad
$2^{0}=\ldots \quad 2^{-1}=\ldots \quad 2^{-2}=\ldots \quad 2^{-3}=_\quad 2^{-4}=$

DEFINITION of NEGATIVE EXPONENTS
a^{-n} is the reciprocal of $a^{n}: a^{-n}=\frac{1}{a^{n}}, \quad a \neq 0$

Think of the "-" as an elevator; if you started on the top (numerator) then take the elevator down (denominator) and if you started on the bottom then take the elevator up!

YOU TRY:
A. x^{-3}
B. 2^{-3}
C. y^{-6}
D. x^{0}
E. $\left(\frac{1}{2}\right)^{-3}$
F.
H. $\left(3 a^{3} b^{5}\right)^{-3}$

Simplifying Expressions That Have Negative Exponents

Simplify $2 x^{-3} y^{-5}$ by rewriting with positive exponents. (Remember that the -3 exponent ONLY goes with the x and NOT the coefficient)

The sign of the exponent changes when the exponent is moved from the numerator to the denominator and vice versa!

$$
2 x^{-3} y^{-5} \rightarrow \frac{2}{x^{3} y^{5}}
$$

A. $x^{-2} y^{5}$
B. $2 x^{-7}$
C. $\frac{2 a^{-3} b^{4}}{c^{4} d^{-5}}$
D.
E.

YOU TRY:

$1 . x^{8} y^{-5}$	$2.5 x^{-3}$	$3 . \frac{3 a^{2} b^{-7}}{c^{-3} d^{4}}$	4.	5.

CHALLENGE! $\left(\frac{2 x^{3}}{y^{4}}\right)^{-1}$

